Ответы на самые распространенные вопросы о вакцинах и вакцинации

Тот кто управляет погодой

Сегодня две сверхдержавы управляют мировой погодой

Выдержка из предисловия одной книги. Давно хотела написать, а в конце прокомментировать. Итак: Сидни Шелдон. Ты боишься темноты?

Старое изречение, гласящее, что о погоде говорят все, но никто ничего толком не знает, теперь потеряло смысл. Сегодня две сверхдержавы получили возможность управлять мировой погодой: Соединенные Штаты и Россия. Другие страны лихорадочно пытаются сравняться с ними.

Поиски господства над погодой, начавшиеся с Никола Теслы в конце XIX века и включающие попытки переноса электроэнергии через космос, стали реальностью.
Последствия трудно переоценить. Погоду можно использовать как благо или как смертоносное оружие. .

Все необходимые элементы для этого имеются.
В 1969 году патентное ведомство США выдало патент на метод «увеличения выпадения осадков искусственным введением паров морской воды в атмосферу».

В 1971 году «Вестингауз электрик корпорейшн» получила патент на систему облучения поверхностных областей планеты.

В том же году «Нейшнл сайенс фаундейшн» был выдан патент на метод модификации погоды.

В начале семидесятых годов прошлого века Постоянный комитет американского конгресса по океанам и проблемам окружающей среды объявил слушания по научным исследованиям военных организаций, касающимся модификации климата и погоды, и обнаружил, что министерство обороны вынашивало планы создания приливных волн с помощью координированного использования ядерного оружия.

Опасность гибельной конфронтации между Соединенными Штатами и Россией была так велика, что в 1977 году Россией и Америкой был подписан договор о запрещении работ по модификации погоды с враждебными целями.
Но этот договор не означал конца экспериментов с погодой.

В 1978 году Соединенные Штаты провели эксперимент, который привел к проливным дождям в шести округах северного Висконсина. Шторм вызвал ветры, дувшие со скоростью 170 миль в час, и причинил убытков на 50 миллионов долларов. А Россия тем временем работала над собственными проектами.

В 1992 году «Уолл-стрит джорнал» опубликовал статью о том, что российская компания «Элат интеллидженс текнолоджис» продает приборы управления погодой под девизом «Погода, призванная к порядку».

По мере продолжения экспериментов в обеих странах модели погоды стали изменяться. В начале восьмидесятых годов прошлого века отмечены странные погодные феномены:

«…область высокого давления не изменялась последние два месяца почти в 800 милях от калифорнийского побережья, препятствуя проходу обычных потоков влажного воздуха с Тихого океана».
Журнал «Тайм». Январь, 1981 г.

«…застойный сезон высокого давления послужил барьером, препятствуя нормальному течению погодных моделей от запада до востока»
«Нью-Йорк таймс». 29 июля 1993 г.

Погодные катастрофы, описанные в моем романе, происходили на самом деле.

Погода — самая могучая из всех известных нам сил. Тот, кто управляет ею, способен расшатать мировую экономику постоянными ливнями, ураганами или торнадо, уничтожить урожай засухами, вызвать землетрясения, ураганы и цунами, закрыть аэропорты по всему миру и полностью разрушить военные полигоны противника.

Я бы спал лучше, если бы мировые лидеры заявили: «Все говорят о погоде, но никто ничего о ней толком не знает».
И чтобы это было правдой.
***************************
Можно было бы не поверить, но погодные феномены последних десятилетий, наводнения, пожары и прочее, настолько ужасают, что думаю, нетрудно было бы в сети найти множество доказательств искусственности происходящего.

Уже и применение ядерного оружия не требуется.
Не думаю, что сильно ошибусь в предположении, что сильные мира сего просто еще не решили, кто первый проредит планету. Все это связано с экономикой, рынками сбыта и прочими деньгами.

Так что и мировой войны уже не надо, а войны – то так, для дерибана бюджетных денег и отвода глаз хомячкам…
Какие еще мысли у кого?
Метки: Беспредел, Мир в агонии

Источник

Тот кто управляет погодой

Люди, с даром управления погодой

2013-09-23 в 22:53 В старину у различных народов имелись особые люди, обладавшие от рождения способностями предсказывать погоду и воздействовать на неё. В гуцульских преданиях есть рассказы о том, как два градовника бьются между собой, определяя, на чьё село должна обрушиться туча с градом.

Градовником можно было также стать, вступив в союз с чернокнижником, завладев чудесным посохом или свечой… При приближении бури градовник бегал кругами, размахивал руками, крестил тучи тремя соломинками, произнося заклятие, звонил в колокола. Градовник мог дважды отказать пришедшему к нему за разрешением высыпать град предводителю бури (скажем, чёрту) и лишь в третий раз позволял высыпать град где-то вдалеке от жилищ, садов, посевов — на дорогу, в овраг…

Сегодня предсказание погоды до сих пор является делом сложным, трудоёмким и зачастую неблагодарным. Самые мощные суперкомпьютеры обрабатывают данные с тысяч метеорологических станций, спутники постоянно кружат над планетой, стараясь уловить момент зарождения урагана, учёные крупнейших научных центров разрабатывают теории развития атмосферных процессов — и всё равно буря обрушивается внезапно даже на Москву, не говоря уж о провинциальных городках и сёлах. Быть может, синоптики упускают некие факторы, влияющие на погоду пусть не в глобальном, а в локальном масштабе? Юрий Зильберт к таким факторам отнёс человеческое сознание.

Сосланный в Воронеж практически одновременно с Мандельштамом, он, подающий большие надежды учёный, специализирующийся в области ядерной физики, поселился в посёлке Рамонь, где устроился в школу учителем физики, труда и физкультуры. Человек энциклопедических знаний, состоявший в переписке с такими корифеями науки, как Бор, Гейзенберг и Резерфорд, Зильберт отличался поразительным оптимизмом, неутомимым трудолюбием и неуёмным любопытством. Перенесённый из академической среды в захолустье, он не только не опустил рук, а напротив, стал работать с утроенной энергией. Сменив поле деятельности, он не сменил образа действий, ко всему подходя серьёзно, отдаваясь работе полностью, без остатка.

Встречаясь с известными агрономами Мазлумовым, Козополянским и Ланье, он неоднократно слышал из их уст сетования на неустойчивость и непредсказуемость погодных условий, что мешает получать стабильные, гарантированные урожаи. Читая хронику засух, он обратил внимание на следующее: прежде изнурённые непогодой селяне, доведённые до крайности, устраивали крестный ход — и результат зачастую был более чем удовлетворительный. Применив статистические методы подсчёта, Зильберт установил, что изменение погоды после проведения крестного хода не может объясняться случайным совпадением. Возможно, решил он, что влияние на погоду оказывает объединённая воля десятков и сотен людей.

Местные жители рассказали Зильберту о старухе, живущей в деревне Галкино и слывущей среди обывателей ведьмой: если она прогневается на кого-либо в округе, то в дом или сарай объекта гнева зачастую попадала молния. Зильберт сам опросил двух пострадавших. Те признали, что были с Фоминичной (так звали старуху) в ссоре, и в грозу молнии поразили у одного — дом, у второго — курятник. И напротив, если в округе долго нет дождя, нужно поклониться Фоминичне курочкой или гусем, и дождик в скорое время прольётся над полями дары приносящих. Зильберт познакомился со старухой.

Фоминична встретила его приветливо, хорошему человеку она всегда рада, дождик — да, дождик иногда удаётся подманить, а вот что молнии на людей насылает, это напраслина. Просто дурной человек сам молнию притягивает, а она ни при чём.

Старуха явно была себе на уме, и когда Зильберт поднёс ей большую коробку шоколадных конфет, она хитро усмехнулась и предупредила учителя, чтобы тот, выезжая из Галкина, не подходил слишком близко к сухой ветле, росшей у поворота на Рамонь.

Зильберт предупреждению внял, и не напрасно: при его отъезде за считанные минуты небо помрачнело, и в тот момент, когда он приближался к указанному месту, в дерево ударила молния и опалила ветлу. Тут же тучи рассеялись, и всю следующую неделю стояло вёдро.

Крайне заинтересованный, Зильберт начал наводить справки: имелись ли в прошлом люди, способные управлять погодой. Ответ был — да! Но судьба их незавидна. Многие процессы колдунов и ведьм кончались плачевно для подсудимых: смертной казнью, в лучшем случае ссылкой. Так, уже в 1699 году, казалось бы, в просвещённое время правления царя Петра I, Николай Голицын за «непотребное устроение грозы во время великих торжеств» был сослан в Тобольск. С той поры в сибирском городе стали происходить странные и пугающие события, прозванные летописцами «воздушными страхами»:

«Май 8-го числа 7213 г. (1702 Р.Х.) (здесь ошибка: маю 7213 года от сотворения мира соответствует 1704 год от рождества Христова. — Прим. ред.), в день Иоанна Богослова, в Тобольску, во время играния комедии, возста с тучею буря жестокая, и сломила над олтарём Соборной церкви крест, также и с Сергиевской церкви верх весь с маковицею и крестом…»; «Ноября 20-го числа 7214 (1706 Р.Х.) в Тобольску видно было: во исходе 4-го числа нощи, посреди небеси, на воздухе, выпал бодто свиток бел, растягиваяся, и вслух людям шустал, и пал посреди двора воеводского, вблизости крыльца; и внезапу явился человек, от него же четыре искры огненныя вверх порознь взлетели и совокупилися в место, и чрез малую минуту всё исчезло; в то же время нанесло тучу и гром велик скрежета часа с два. И бысть воеводскому дому пожар…» (орфография подлинника), — писал в «Летописи Сибирской» тобольский книжник и начётчик Черепанов.

Это может быть интересно:  Сводка ДТП на дорогах Рязанской области за прошедшие сутки

Да что начётчик, имеется свидетельство поэта Бориса Пастернака от лета 1907 года: «На днях Мамонтовы играли в 4 руки симфонию Бетховена. Хорошо играли. Собиралась гроза. В четвёртой части есть длинный период, который идёт crescendo до апогея диссонанса… Этот кульминационный пункт берётся fortissimo. И вот в этот момент прокатился первый гром, глухой, но ужасный, одновременно с аккордом… Это невозможно передать…»

Энергия, которую способен выделить человек, ничтожна по сравнению с энергией грозы. Но человеческого крика порой достаточно, чтобы вызвать опустошительную лавину. Силы накапливаются в природе, человек лишь провоцирует их освобождение. Подобный феномен можно определить как эффект спуска курка По мнению Зильберта, человеческий мозг каким-то образом попадает в резонанс с природой, и тогда он способен повелевать молниями. У отдельных людей способность попадать в резонанс велика от рождения, но при известных условиях её можно развить у многих.

Рассуждениями Зильберт делился с учениками, и они дошли до нас лишь в пересказах. Леонид Паринов, рамонский старожил, вспоминает: «Порой во время урока, когда надвигалась гроза, Юрий Аркадьевич подходил к окну и щёлкал пальцами. В то же мгновение молния ударяла в громоотвод, установленный на каменной водокачке…»

О возможности управлять погодой Зильберт писал своим коллегам в Москву. По этой или по иной причине, но сентябрьским вечером 1939 года к дому учителя подъехал автомобиль, на котором Юрия Аркадьевича Зильберта и увезли — сначала в Воронеж, а затем в одну из спецлабораторий, которые в преддверии войны ковали оружие Победы.

Осенью сорок первого, когда гитлеровские войска приближались к Москве, ударили необычайно сильные морозы. Выходила из строя хвалёная немецкая техника, мёрзли солдаты. А вслед за морозами ударила Красная Армия…

И в наши дни встречаются кудесники — самые обычные на первый взгляд люди, обладающие удивительной способностью разгонять тучи в ненастную погоду, усмирять ураганы, мановением руки вызывать молнию, начинать и прекращать дождь и снегопад…

Один из таких «особых» людей — почётный член Ордена колдунов, бакалавр Российского отделения Международного братства магов Иван Иванович Кулебякин.

Впервые о своём даре Ваня узнал, будучи ещё в детдоме под Ярославлем: «Когда мне исполнилось 6 лет, случился сильный ураган. Деревья вырывало с корнем… Все боялись, а меня какая-то сила вынесла на улицу… Я поднял руки вверх и некоторое время так стоял… Буквально через 7–8 минут ураган стих…»

Иван Иванович демонстрировал желающим кассету, на которой наглядно запечатлён процесс «разгона туч». Под воздействием пассов Кулебякина увесистое облако в небе почти моментально тает, будто его стирают ластиком… В мае 1992-го к Ивану Ивановичу обратился известный шоумен Игорь Микитасов. Он устраивал в саду «Эрмитаж» в честь празднования юбилея Булгакова весенний ночной бал Полнолуния, или Бал ста королей.

Небо в тот вечер было затянуто облаками, луна всё не показывалась. И тогда в полночь Кулебякина, одетого в зелёный плащ и маску, с ручным голубем на плече, посадили в корзину аэростата и торжественно подняли над садом. Он «раздвинул» тучи, и с неба засияли луна и звёзды… Восторгу зрителей не было конца.

Не раз приходилось «делать» погоду и в других городах. В августе 1992 Кулебякин две недели «держал» солнце в Крыму во время Международного фестиваля магов «Волшебная Алушта».

Иван Иванович как-то приехал в Пермь накануне выборов местной власти. 27 ноября на улицах — ни снежинки, стоит промозглая, слякотная погода. Он поводил руками — и через 15 минут повалил снег. А 1 декабря, в день выборов, воцарилась самая настоящая зима…

На симпозиуме в Сочи Кулебякин у всех на глазах из одной тучи вызвал дождик, другую стёр, а третью куда-то унёс… После этого коллеги-маги прозвали его «лесным колдуном». В юности Иван Кулебякин работал на «Мосфильме». Узнав о его способностях, кинорежиссёры приглашали Ивана на съёмки, чтобы «делал» погоду. А чтобы внести его в смету съёмочной группы, давали эпизодические роли. Так он снялся в лентах «Железный занавес», «Поэма о крыльях». В фильме «Ермак» сыграл казачьего атамана Горшка. Не раз его приглашали и на съёмки радио- и телепередач. Однажды, пока шёл прямой эфир «Радио Ракурс», 17 декабря 1995 года, он вызвал «на заказ» грозу и сильный снегопад и прекратил всё это через полчаса.

Источник



Тот кто управляет погодой

Наша Земля купается в океане солнечного света. Световой поток — солнечная постоянная, 0,136 Дж/см 2 . с, и наклон земной оси к плоскости орбиты делают земную погоду жаркой на экваторе, умеренной в средних широтах, холодной в приполярных областях. Ею управляет, порой очень решительно, активность звезды, проявления которой — темные пятна на ее видимом лике (фотосфере), хромосферные вспышки, гигантские выбросы из солнечной короны и другие сопутствующие явления. Намеки на опосредованное и не всегда заметное влияние солнечной активности появились давно. В 1930-х годах воздействие Солнца на земную погоду отмечал в своей книге «Земное эхо солнечных бурь» замечательный провидец, советский физик А. Л. Чижевский. И только совсем недавно, благодаря наблюдениям со спутников и орбитальных станций, механизм солнечно-земных связей, управляющий погодой, был раскрыт. Влияние солнечной активности на климат планеты стало вполне очевидным.

ПОГОДНЫЕ АНОМАЛИИ НАЧАЛА ВЕКА

Неладно что-то в «погодном королевстве». Мягкие, щадящие зимы последних лет неожиданно сменились сильными холодами и обильными снегопадами по всему Северному полушарию. Одними из самых популярных стали передачи о погоде и ее аномалиях. Метеорологи не могли найти причину погодных срывов в своих изощренных программах на сверхмощных ЭВМ и беспомощно разводили руками на экранах телевизоров. Кто виноват в погодных аномалиях, что делать и долго ли эта вакханалия будет продолжаться? Не будучи экстрасенсами (не хватило, видимо, их природного апломба), синоптики лишь успокаивали общественность, обещая скорое потепление и советуя теплее одеваться.

В самом деле, что можно было посоветовать замерзавшим жителям сибирских и дальневосточных поселков, где температура зашкаливала за -40 о ? Или беспечным европейцам, вязнувшим в снегах на скоростных магистралях? Или деловым американцам, пешком пробиравшимся в офисы через метровые сугробы? А что сказать терпеливым жителям африканских пустынь, изведавшим прелесть наших северных метелей?

Последняя зима, кажется, напрочь перевернула все рассуждения о всемирном потеплении, парниковом эффекте и техногенном воздействии на климат. Киотский протокол об ограничении выбросов «парниковых газов» (кстати, так и не подписанный американцами), наверное, можно забыть. Долгосрочные прогнозы трещат по швам и заставляют искать другие объяснения погодным срывам. А тут еще череда жестоких атлантических ураганов последних лет (Charlie, Jeanne, Katrina, Rita, Vilma и др.), для которых уже не хватает милых женских имен, ураганов, ставших проклятием для южных штатов США и стран Карибского бассейна. И столь же свирепые тайфуны Тихого океана, превзошедшие все ранее виденное. Откуда этот разгул погодной вольницы?

СТАНДАРТНАЯ МОДЕЛЬ СОЛНЦА

В 1920-х годах английский астрофизик Артур Эддингтон предпринял попытку «заглянуть» внутрь звезды, чтобы узнать ее общее устройство, состав, параметры недр. Появилось целое направление в астрофизике — звездное моделирование. Отталкиваясь от наблюдательных характеристик — массы, светимости, радиуса, температуры поверхности, можно составить и решить систему уравнений, определяющих стабильность звезды: уравнения состояния вещества и переноса энергии, гидростатической и тепловой устойчивости каждого элемента объема. Предполагалось, что звезда — медленно вращающееся сферически симметричное тело, без сильного магнитного поля, выделяющее энергию в центральной, самой горячей части. Теперь мы знаем, что энергетика звезд основана на термоядерных реакциях синтеза, очень сильно зависящих от температуры, и потому центр звезды и есть ее энергетический реактор. Не ведая об этом, Эддингтон интуитивно поместил источник энергии в центральную зону, и не ошибся. Модели развивались по мере накопления астрофизических знаний и, что не менее важно, улучшения техники расчетов, резкий прогресс которой обеспечили компьютеры. В настоящее время созданы хорошие модели звезд всех классов — от молодых, как Солнце, живущих за счет «горения» водорода, до старых, перешедших на гелиевое, углеродное и более тяжелое ядерное горючее (красные гиганты), и даже до таких, которые исчерпали все топливные ресурсы (белые карлики, нейтронные звезды).

Согласно стандартной модели, Солнце состоит из трех зон, отличающихся температурой, плотностью и процессом передачи энергии. Центральная зона (ядро в пределах 0,2 радиуса) — наиболее плотная и нагретая часть звезды ( ρ центр = 150 г/см 3 , Т центр- = = 1,5.10 7 К). Передача тепла к границе зоны происходит за счет слабой конвекции. Это солнечный термоядерный реактор, где в реакциях соединения четырех ядер водорода в ядро гелия выделяется энергия в миллионы раз большая (на единицу массы), чем в химических реакциях горения нефти и газа. Выделяющееся тепло затем проходит через всю звезду и излучается в виде светового потока. Температура постепенно убывает по радиусу, в результате чего уже в следующей, статической радиационной зоне температура опускается до 10 6 К, что недостаточно для ядерного «горения». Тепло передается путем многократного поглощения и излучения атомами рентгеновских квантов. Происходит медленная диффузия теплового потока, пока он, остывая, за миллионы лет не дойдет до границы радиационной зоны на глубине примерно 0,75 солнечного радиуса. Здесь механизм передачи меняется на более эффективный конвективный перенос. Внешняя конвективная зона наполнена бурлящей горячей плазмой, вырывающейся в фотосферу ( ρ 10 -8 г/cм 3 , Т = 6 . 10 3 К).

Это может быть интересно:  Rp5 погода челно вершины

Стандартная модель, несмотря на принятые упрощения, отражает внутреннее строение Солнца с высокой точностью. С ее помощью получены радиальные профили плотности, температуры и состава вещества, позволяющие в целом понять внешние проявления светила. Проявления эти кроме общей энергетики, задаваемой термоядерным ядром, определяются конвективной зоной с ее сложной магнитной гидродинамикой высокотемпературной плазмы. Из-за сильной турбулентности плазменных потоков и генерации магнитных полей процессы, протекающие в зоне конвекции, наиболее запутаны и менее понятны. Мы изучаем их проявления на фотосфере, в атмосфере и короне Солнца, самом верхнем, разреженном слое атмосферы ( ρ 10 -14 г/см 3 , Т 10 6 К), но свойственные им закономерности, скрытые под фотосферой, еще во многом «вещь в себе».

В общих чертах понятно появление темных пятен, температура которых ниже горячей яркой фотосферы. Темные пятна образуются на всплывающих магнитных трубках, так как магнитное поле препятствует теплообмену с окружающей средой. Солнечная корона, предстающая во всем величии при полных солнечных затмениях, представляет собой начальный этап солнечного ветра — потока водородно-гелиевой плазмы, которая прорывается сквозь поры фотосферной грануляции и ускоряется по мере ухода от звезды. Почему температура солнечной короны в сотни раз выше температуры фотосферы, долго было мучительной загадкой, которую сумели разгадать только в последнее время благодаря наблюдениям с орбитальных обсерваторий. Солнечные хромосферные вспышки с выделением энергии, эквивалентной взрыву миллиона атомных бомб, объясняются лишь качественно. О детальной модели, которая позволила бы предугадать момент и энергию каждой вспышки, можно только мечтать. И уж совсем загадочно выглядят корональные дыры, наблюдаемые в рентгеновском излучении короны, и корональные выбросы — гигантские облака плазмы, вылетающие в космическое пространство. Все перечисленные особенности нашей звезды — ее незлобный, но достаточно строгий характер — получили название солнечной активности (СА).

ЦИКЛЫ СОЛНЕЧНОЙ АКТИВНОСТИ

Хорошо налаженный мониторинг Солнца за последние полтораста лет и восстановленные данные прошлых эпох определенно показывают цикличность солнечной активности. Наиболее известным и принятым в научных кругах ее индексом служат числа Вольфа (W), указывающие количество темных пятен и их групп (активных областей) на солнечном диске. Временная зависимость W( t ) показывает, что средняя продолжительность цикла составляет примерно 11 лет, но наблюдается заметный разброс (от 7 до 15 лет) для отдельных циклов. Также заметно изменяется, порой в несколько раз, амплитуда циклов (максимальное значение W max ). Гармонический анализ показал, что кроме 11-летнего периода есть еще вековой (порядка 100 лет), ответственный за изменение амплитуд циклов. На стыке столетий амплитуды циклов падали: не очень сильно в начале XX века, более заметно — в начале XIX и катастрофически — в конце XVII — начале XVIII века. Последний период (1640-1720) известен как Маундеровский минимум. В эти 80 лет практически была «отменена» цикличность солнечной активности, на Солнце вместо десятков и сотен в «нормальное» время порой появлялись только два-три пятна — и все! В этот же период почти не наблюдались полярные сияния и, что важно для нашей темы, по всей Европе стояли очень холодные зимы. Замерзали каналы, реки, даже Северное море, прогреваемое Гольфстримом и поэтому обычно круглый год открытое для судоходства. Много лет подряд замерзала в Лондоне Темза, и на ее льду устраивались праздничные гуляния. Что-то необычное происходило с Солнцем (точнее — в его внешней конвективной зоне), что определенно влияло на земную погоду.

СМЕНА МЕХАНИЗМА ПЕРЕДАЧИ ТЕПЛА

Темные пятна на Солнце — результат бурной конвекции горячей плазмы, выносящей на фотосферу новые, возникшие в глубине магнитные потоки, образованные, как показал американский физик Е. Н. Паркер, под действием динамо-механизма. Совместное действие плазменной конвекции и дифференциального вращения Солнца (неодинакового на разных широтах, наиболее быстрого — период 24 дня — на экваторе) приводит к генерации магнитного поля, закручиванию и запутыванию его силовых линий и, в конечном итоге, к переориентации общего поля Солнца примерно за 11 лет. А в результате проникновения частиц солнечного ветра в верхние слои атмосферы, ионизации и возбуждения атомов воздуха возникают красочные полярные сияния. Они появляются в районе магнитных полюсов, но иногда, во время магнитных бурь, опускаются до средних широт.

Легко предположить, что погодные аномалии прошедшей зимы обусловлены вековым периодом солнечных циклов, который в наше время сулит повторение того, что наблюдалось в начале предыдущих веков. Видна тенденция падения амплитуд трех последних циклов (1976-2006): 21-й цикл — W max = 164, 22-й цикл — W max = 158, 23-й цикл, сейчас завершающийся, — W max = 120. Амплитуды еще не достигли тех значений, которые они имели на стыке веков (W max = 50 — 80), но можно считать это только началом, и спад солнечной активности, скорее всего, продолжится. Если это действительно так, холодная зима 2006 года — не случайный эпизод, а предвестник довольно длительного периода, который может охватить десятки лет (несколько 11-летних циклов). Не исключается даже повторение Маундеровского феномена, изменение процесса передачи тепла в конвективной зоне. О возможности такого повтора указывалось ранее (газета «Первое сентября», приложение «Физика», 1997, № 17). Похоже, прогноз начинает сбываться.

Прошедшая зима показалась столь аномально неуютной еще и потому, что почти весь XX век (точнее, с 1930-х годов) циклы солнечной активности имели высокие амплитуды (W max = 150 — 200), и мы просто забыли, какие суровые зимы бывали раньше.

ПЕРЕНОСЧИКИ СОЛНЕЧНОГО ВЛИЯНИЯ

Темные пятна сами по себе не отвечают за солнечно-земные связи, они лишь показатели переменности солнечной активности. «Переносчиками влияния» могут быть материальные потоки, испускаемые звездой, характер и интенсивность которых как-то связаны с параметром W. Это и солнечный ветер (поток водородно-гелиевой плазмы; ее плотность и скорость зависят от фаз солнечной активности), и выбросы вещества во время солнечных вспышек, и корональные массовые выбросы (Coronal Mass Ejections, CME) — гигантские облака плазмы, вылетающие из солнечной короны (см. «Наука и жизнь» № 3, 2006 г.). Важнейший погодный фактор — от образования корональных массовых выбросов до высыпания в атмосферу потоков частиц захваченной радиации, — отражающий влияние солнечной активности, пока не учитывается в расчетных моделях. Сейчас, когда стало ясно, что его надо ввести в модели, трудно оценить, насколько он изменит качество прогнозов погоды. Пока известна только общая схема механизма солнечно-земной связи, и нужны детальные исследования всех его звеньев. Но уже тот факт, что увеличение числа корональных массовых выбросов в последнее время (23-й цикл) совпало с аномалиями земной погоды, свидетельствует, что она управляется солнечной активностью. Экскурсы в прошлое — Маундеровский минимум, начало XIX и XX веков — дают дополнительную уверенность в правоте сделанных предположений, несмотря на неполноту наблюдательных данных. За Солнцем стали внимательно следить только с появлением спутников (с 1970-х годов); связь его активности с земной погодой долгое время не получала подтверждения и просто отвергалась. Сейчас появилась возможность эту связь учитывать.

Анализ активности Солнца за пять веков показал его несомненное влияние на земную погоду. Наш климат всецело определяется солнечной радиацией и наклоном земной оси к плоскости орбиты. А текущая погода (в первую очередь ее аномальные проявления) зависит от «настроения» светила — его активности, приводящей к выбросам гигантских облаков плазмы. В настоящее время, как и всегда в начале века, Солнце, управляющее земной погодой, находится не «в духе», и не исключено, что такое состояние затянется на десятки лет и будет сопровождаться непривычно холодными зимами, бурями, ураганами и другими проявлениями дурного «настроения».

Лучков Б. Мир, в котором мы живем. Популярный курс астрофизики и космологии. Лекция 1 // Физика, 2005, № 17.

Лучков Б. Солнечное влияние на земную погоду // Сб. науч. трудов, т. 7, с. 79. — Научная сессия МИФИ-2006.

Источник

Управление погодой

Град-пушки, метеотроны, самолеты. Как ученые в XX веке научились работать с облаками, туманами и грозами, вызывать и предотвращать осадки и существует ли климатическое оружие?

Первые опыты влияния на погоду

С древних времен люди зависели от погоды и мечтали на нее влиять. Племенные шаманы придумывали причудливые обряды по вызыванию дождя, а аборигенам оставалось только одно: молиться воображаемым богам солнца, ветра и грома и приносить им свои дары в надежде, что установится благоприятная погода. Многие столетия подряд не существовало других способов, кроме молитв, чтобы влиять на атмосферные явления. Но попытки были: например, в XIX веке фермеры использовали град-пушки, которые, как они надеялись, мешают образованию градин в облаках: под их воздействием град заменялся дождем. Когда приближалась гроза, эти пушки стреляли каждые десять секунд, что не слишком нравилось соседям. Взрывы происходили за счет поджигания смеси ацетилена с кислородом, которая располагалась в нижней камере аппарата. И хотя ударная волна действительно возникала, нет никаких научных доказательств эффективности этого устройства.

Миф о том, что стрельба предотвращает град и порождает дождь, родился из историй ветеранов войн, которые сообщали о том, что после каждого крупного сражения шел ливень. Эти истории были собраны в книге «Война и погода», которая вышла в 1871 году. Возможно, под влиянием этой книги Конгресс США выделил $9000 на проведение опытов по вызыванию дождя (примерно $250 000 сейчас). Был закуплен порох и взрывчатка в больших объемах и проведены испытания в 1891–1892 годах в Техасе под руководством Роберта Сент-Джорджа Дайренфорта. Это был первый масштабный эксперимент такого рода, инициированный государством, однако он потерпел полную неудачу.

Это может быть интересно:  Прогноз погоды Колодежное от Погоды 33

В то же время другой американец Луис Гатманн попытался воздействовать на облака с помощью хладореагентов. Он даже запатентовал свой «метод производства дождя» в 1891 году. Речь шла о быстром освобождении жидкой углекислоты из баллонов в облаке, что должно было привести к его сильному охлаждению и вызывать конденсационный рост облачных капель. Сам метод был опробован позже, но создавал лишь слабые осадки. Тем не менее это было открытием: впервые возникло понимание о том, что к образованию осадков приводит охлаждение облака. На этом принципе основаны современные техники воздействия на погоду.

На рубеже XIX–XX веков люди продолжали мечтать о «машине для хорошей погоды». На одной из футуристических открыток, вышедших в Германии в 1900 году, можно увидеть «тучеразгонитель» на паровой тяге: немцы верили, что через сто лет управление погодой станет возможным. И они почти угадали.

Теория и практика дождя

Сегодня влияние на облака, как правило, оказывается с самолетов — путем рассеивания в воздухе специальных реагентов. Первая попытка такого воздействия с помощью жидкого воздуха была предложена учеными Мельбурнского университета в 1904 году. Его тут же взялся опробовать немецкий метеоролог Альфред Вегенер. Однако авиация находилась еще в самом начале своего развития и не было возможности распылять вещества на нужном уровне, поэтому опыт был неудачным.

В СССР работа над искусственным дождем началась в 1921 году в Московском научно-мелиоративном институте. В лабораториях проходили опыты по искусственному осаждению облаков с помощью заряженного песка, однако значительных результатов не было.

Первым, кому в ходе опытов удалось получить обильные дожди, был голландец по фамилии Фераарт. Он провел четыре эксперимента в 1931 году: с самолета, летящего на 200 м выше облака, сбрасывалась твердая углекислота и обычный лед, охлажденный до –70 °C. Во всех случаях шел дождь, но это не убедило научное сообщество в эффективности метода, так как Фераат не смог подобрать правильное физическое объяснение процессу. Он рассказывал об электрическом разряде, полученном частицами углекислоты за счет трения в полете над облаком, и ошибочно считал, что это послужило импульсом к образованию микроскопических капелек жидкой углекислоты, которые и вызвали в облаке укрупнение дождевых капель и их выпадение на землю в виде дождя. Коллеги посчитали опыты Фераарта случайным совпадением и забыли о них.

Впрочем, теория дождевания подоспела очень скоро: в 1933 году шведский метеоролог Тор Бержерон наконец объяснил механизм образования дождя, указав на главное: в нем задействованы ледяные кристаллы, которые содержатся в переохлажденных облаках. И на них можно воздействовать, так как облако представляет собой неустойчивую систему: достаточно малого импульса, чтобы начался самопроизвольный процесс образования осадков. Теория о переохлажденных облаках и возможности осуществить их искусственную кристаллизацию получила название в честь трех исследователей: Вегенера — Бержерона — Финдейзена, и стала физической основой для современных методов активного воздействия на переохлажденные облака.

В 1931 году в Москве был создан Институт искусственного дождевания с филиалами в Ленинграде, Одессе и Ашхабаде. Метеоролог Владимир Оболенский, знакомый с идеями Бержерона, проводил опыты в течение 1930-х годов вплоть до начала войны, воздействуя на облака и туманы с помощью высокочастотных электрических зарядов, ионных потоков, заряженного и незаряженного кварцевого песка, пыли, радиоактивных руд, хлористого кальция и размельченного льда.

В США в 1944 году была создана лаборатория «Дженерал-Электрик». Она занималась изучением физики облаков и осадков и проводила первые опыты по воздействию на переохлажденные облака и туманы с помощью хладореагентов. Например, в 1946 году было сброшено 1,5 кг гранулированного сухого льда (твердой углекислоты) с самолета в переохлажденное слоисто-кучевое облако, и уже через пять минут облако превратилось в снежинки.

Метод воздействия на облака с тех пор остался практически тем же. Меняются только реагенты и способы рассеивания. Если в начале это была твердая углекислота и самолет, то позже ученые перешли на частицы йодистого серебра, которые можно было рассеивать не только с самолета, но и с наземных генераторов, что было значительно дешевле. Полет американского самолета для засева облаков стоил в 1948 году $25 в час, а эксплуатация наземного генератора — $2–3 (сейчас это около $260 и не больше $35 соответственно). К 1950 году в США уже открылись фирмы по засеву облаков — они обслуживали около 10% территории страны.

В 1961 году французский профессор Анри Дессен изобрел метеотрон — это своего рода тепловая пушка, которая создавала мощный поток теплого влажного воздуха и запускала его вверх. Таким образом создавалась область пониженного давления, что должно было привести к формированию циклона. В СССР в 1979 году был разработан свой «Суперметеотрон» над озером Севан в Армении. Шесть двигателей от самолета Ту-104 разогревали воздух до 1100 °C и выбрасывали его вверх со скоростью свыше 500 м/с. Ничего из этого не вышло, и вскоре суперметеотрон журналисты прозвали суперлохотроном. Сегодня работа с облаками ведется преимущественно силами авиации.

В наши дни более 20 стран мира искусственно вызывают дожди, чтобы увеличить запасы пресной воды. Это прежде всего государства с засушливым климатом: Таиланд, ОАЭ, Саудовская Аравия, Китай. В Таиланде еще в 1950-х годах стартовал Королевский проект создания дождя — его инициатором и разработчиком был сам король Пхумипон Адульядет. Первые удачные эксперименты пришлись на 1970-е годы. Король даже имеет патент Европейского патентного ведомства на модификацию погоды по технологии Royal Rainmaking. Многие азиатские страны вызывают дожди не только в засуху, но и во время смога, чтобы хоть немного очистить воздух.

Российская технология дождевания используется и за рубежом. В числе первых «заказчиков» дождя от русских ученых была Куба. В 1982–1986 годы в рамках советско-кубинского научно-технического сотрудничества было проведено около 200 опытов с облаками.

В 1990 году Сирия после продолжительного периода засух, негативно сказывающихся на сельском хозяйстве, создала комиссию, которая должна была выбрать способ увеличения атмосферных осадков: рассматривался опыт России, США, Австрии, Италии, Швейцарии, Франции, Японии и Швеции. В итоге в 1991 году выбор был сделан в пользу российской технологии. В показательном эксперименте работу с сирийскими облаками вели четыре российских самолета. За 93 полета продолжительностью 358 летных часов они добились дополнительных осадков объемом 4,8 млрд м3. Йодистое серебро запускалось с самолетов в облака с помощью пиропатронов. Опыт был признан удачным, и российские специалисты были «виновниками» многих дождей в Сирии в 1990-е годы. Следующими заказчиками осадков по российской технологии были Иран и Португалия.

Затяжные дожди могут стать оружием в борьбе с противником: они деморализуют воюющих солдат и размывают дороги, затрудняя поставку продовольствия и оружия. Это хорошо понимали США: они первыми применили климатическое оружие в виде ливня во время войны во Вьетнаме. Дождевая операция под названием «Попай» началась 20 марта 1967 года и продлилась до 5 июля 1972 года. Самолеты работали только в период дождей с марта по ноябрь, распыляя над облаками иодид серебра. В результате такого вмешательства выпало в три раза больше осадков, чем обычно, были затоплены поля с рисом, но главное — была размыта тропа Хо Ши Мина, стратегически важные транспортные пути общей протяженностью 20 000 км. Во многом это обеспечило военную победу Северного Вьетнама.

В СССР также изучалась возможность воздействия на гидрометеорологические процессы в военных целях, и неизвестно, к чему привели бы мировые эксперименты такого рода, если бы их не запретила ООН в 1977 году. Страны подписали конвенцию «О запрещении военного или любого иного враждебного использования средств воздействия на природную среду». А если они и ведут работу в этой области, то тщательно ее скрывают.

Главы засушливых государств наверняка удивляются попыткам остановить дождь, которые предпринимались в России и в Китае. Ежегодно Москва выделяет миллионы рублей с целью метеозащиты города. Так, в этом году власти столицы заключили контракт с Агентством атмосферных технологий на 406,4 млн руб., чтобы провести без ливней и гроз четыре больших праздника: 1 мая, День Победы, День России и День города. В такие дни десяток дежурных самолетов заранее «расстреливают» дождевые облака на подступах к городу, устраивая дожди за 20–50 км до столицы — такова дальность одночасового ветрового переноса облаков. В качестве реагентов используется гранулированная твердая углекислота или жидкий азот, а также их комбинации, для засева применяются пиротехнические средства.

Современные методы управления погодой позволяют разогнать туманы в аэропортах, предотвратить град и снежные лавины, управлять дождем и снегом. Но, несмотря на все усилия ученых, пока не удается найти способ остановить ураган или изменить траекторию тайфуна, повлиять на силу ветра и сдержать необратимый ход глобального потепления.

Источник